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1.0  Introduction

The solution of the finite difference equations in RELAP5-3D, whether in the semi-
implicit or nearly-implicit method, involves an algebraic reduction from the full
set of governing equations and correlations to a much smaller set of equations. The
smaller system is solved, and the remaining unknowns obtained with back substi-
tution and further algebra. The algebraic reduction to the smaller system is done
by straightforward Gaussian Elimination with neither preconditioning nor pivot-
ing. However, the reduction is applied to a matrix that is often ill-conditioned. Loss
of accuracy from this ill-conditioning can result in not only inaccurate solutions,
but also time-step reduction. Improving this algebraic reduction with a combina-
tion of scaling and pivoting should result in greater accuracy and removal of a
source of time-step reductions.

2.0  Methodology for the Improved Solution Model

2.1  Technical Background of the Model

2.1.1  Derivation of the Matrix Equation

The following is a detailed mathematical description of the semi-implicit method
for time advancement. The same techniques will also be applied to the nearly-
implicit method, but the details are not given here.

The finite difference form of the governing equations in RELAP5-3D for the semi-
implicit method are given in Reference 1 in Equations (3.1-87) - (3.1-91), (3.1-103),
and (3.1-104). Equations (3.1-87) through (3.1-91) are grouped according to a con-
trol volume as represented in Equation (3.1-115). A slight generalization of this
equation is given in Equation (1) below; it accounts for the fact that there may not
be exactly 2 junctions, j, associated with volume L. Let J be the set of junctions
attached to volume L. As defined in Equation (3.1-114), x is the vector of unknown
differences associated with volume L, i.e. noncondensable density, vapor energy,
liquid energy, vapor void fraction, and pressure.
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(1)

where

(2)

The entries of A, b, g, and f are given in Reference 1 in Equations (3.1-117)-(3.1-

158). The combined set of finite difference equations for the volumes and

junctions in the flow region can be written in matrix form. Let be the

(5 )x(5 ) matrix whose L-th main diagonal block is A. Then the matrix equa-

tion is

(3)

where  is the 5  length vector of unknown differences,  is a 5  length

vector, is a 5 matrix, and is the 2 length vector of phasic veloc-

ities. The semi-implicit method then applies LU factorization without pivoting to

form a factorization of the matrix, = . Define L as the lower triangular

matrix obtained from the identity matrix by replacing row 5k with row 5k of

for k = 1, 2,....., N. Multiplying Equation (3) by changes only every fifth equa-

tion and leaves the others unchanged. The product, , has every fifth row

entirely filled with zeroes except for the main diagonal entry. This means that the

submatrix consisting of every fifth row and column can be decoupled from the rest

via a permutation of the product . Let P be the permutation matrix that

reduces  by renumbering every fifth equation (the pressure equation) last,

then
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(4)

Applying these equations to Equation (3) produces a system of the form

(5)

where y = P . It can be solved by first solving and then back substi-

tuting . However, the right hand side of Equation (5) still

involves unknown velocities that must first be algebraically replaced to produce a

system involving only pressures. This is done by first solving the velocity Equa-

tions (3.1-103) and (3.1-104) of Reference 1 for the velocities differences and

. Denote the solution by = Hp, where p is the vector of pressures. Substi-

tuting this into block row 2 of Equation (5) yields a system involving only pres-

sures.

(6)

2.1.2  Error Estimate for the Gaussian Elimination Methods

Suppose we are solving Ax = b. Because of the presence of round-off errors, the real
matrix equation that is solved is . It is known, Reference 2,
that the error  satisfies

(7)

where denotes the maximum norm of a vector x, k(A) is the condition number
of A defined to be

(8)

and  is the maximum norm of the matrix A. A matrix A is said to be well con-
ditioned if k(A), which mathematically cannot be smaller than one, is not much
greater than one. A matrix is said to be ill conditioned if k(A) is on the order of

 or bigger.

Since it is obvious from the inequality (7) that the computed error is much smaller

P L 1– A1( )PT M11 M12

0 M22

=

M11 M12

0 M22

y1

y2

r1

r2

PL 1– b1 B1v1
+( )= =

x1 M22y2 r2=

M11y1 r1 M12y2–=

vg j,
n 1+

vf j,
n 1+ v1

Cp M22 PL 1– B1H( )2–( )p r2= =

A x ∆x+( ) b ∆b+=
∆x

∆x
x

----------- k A( ) ∆b
b

------------<

x

k A( ) A A 1–
=

A

10
10



Page 4 of 11
if A is well conditioned than if it is ill conditioned, it is easy to speculate that the
Gaussian elimination method will give accurate results if the matrix A is well con-
ditioned. This, however, is not always the case as the following example from Ref-
erence 2 shows. Consider the following system Ax = b, where

(9)

with << 1. This is a well conditioned system, k(A) = 3 in the maximum norm and
Gaussian elimination is expected to yield accurate results. However, the choice of

 as pivot will have a disastrous effect on the accuracy of the solution as
shown in Reference 2. This is because the LU factorization of the Gaussian reduc-
tion process can introduce arbitrarily large errors if no pivoting is used. Hence,
pivoting must be used if accuracy is desired on a consistent basis. The example in
Equation (9) also suggests that small elements on the main diagonal for a matrix
with the maximum norm of each row and column vector equal to one quite often is
an indication that bad pivots exist rather than ill-conditionness is present.

On the other hand, complete pivoting is not needed as the following results from
Reference 2 shows. Let  and  be the computed triangular factors of a nxn
matrix A, obtained by using Gaussian elimination with partial or complete pivot-
ing. Then if floating-point arithmetic with rounding unit u has been used, there is
a matrix E satisfying

(10)

such that

(11)

Here for partial pivoting and for complete pivoting. By

analyzing the rounding errors involved in solving the triangular systems that
involve and , it is possible to derive a similar result for the computed solution

. Let denote the computed solution of the system Ax = b. Then there is a matrix
, depending on both A and b, satisfying

(12)

such that

(13)

From the above results, it is clear that for n = 5 which is the order of the matrix in
Equation (2), partial and complete pivoting should yield similar results and hence
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there is no need to use complete pivoting. Partial pivoting applied to a well-condi-
tioned matrix will give good results. The only question is how the accuracy of the
solution should be improved if the matrix is ill-conditioned.

2.1.3  Scaling of Linear Systems

As discussed in Reference 2, in a linear system Ax = b the unknowns are often
physical quantities. If we change the units in which these are measured, this is
equivalent to a scaling of the unknowns--say, . If we at the same time
multiply the ith equation by , then the original system Ax = b will be trans-
formed into a system A’x’ = b’, where

(14)

and

(15)

It appears that it is natural to expect that such a scaling should have no effect on
the relative accuracy of the computed solution. This is in fact to a certain extent
true, as the following theorem designed by F. L. Bauer on p. 181 in Reference 2
shows.

Denote by x and x’ the computed solutions to the two systems Ax = b and
. Assume that  and  are diagonal matrices, whose ele-

ments are even powers of the base in the number system used, so that no rounding
errors are introduced by the scaling. Then, if Gaussian elimination is performed
in floating point arithmetic on the two systems and if the same choice of pivots is
used, all the results will differ only in the exponents, and we have exactly

.

It follows that essentially the only effect a scaling can have is to influence the
choice of pivots. Now assume that we use the partial-pivoting strategy. Obviously,
for any given sequence of pivots (which does not give a pivot exactly equal to zero)
there exists a scaling of the equations such that partial pivoting will select these
pivots. It is clear, then, that an unsuitable scaling of the equations may lead to a
very poor choice of pivots.

It is therefore recommended in Reference 2 that if partial pivoting is used, then
the equations should be balanced or equilibrated before the elimination. By this
we mean that the matrix  of the scaled system shall satisfy

(16)

From Bauer’s theorem, it follows that it is not necessary to perform the equilibra-
tion explicitly. Instead we can modify the partial pivoting strategy and in step k of
the elimination process (Gaussian elimination process introduces zeroes to all the
entries below the main diagonal up to the kth column of the reduced matrix) look
for

xj

x j α jx j'=
βi

A' D2AD1= b', D2b= x, D1x'=

D1 diag α1 α2 … αn, , ,( )= D2, diag β1 β2 … βn, , ,( )=

D2AD1( )x' D2b= D2 D1

x D1x'=

A aij( )=

maxi j n≤ ≤ aij 1=
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(17)

where

(18)

While Bauer’s theorem seems to suggest that scaling is of limited advantage
except for influencing the choice of pivots, it is also true that if scaling by itself is
helpful in reducing the condition number of the matrix, it is advantageous that the
matrix is scaled first before the matrix equation is solved.

Hence, one approach is to determine the diagonal scaling matrices and so
that the condition number of  is minimized. However, it turns out that
these optimal scaling matrices essentially depend on , which in practice is
unknown. Another objection to this approach is that the scaling of the unknowns
will change the norm in which the error is measured. Thus a sensible approach,
p.183 of Reference 2, in most cases is to choose the column scaling matrix in a
way which reflects the importance of the unknowns and to use  to equilibrate
the matrix.

2.1.4  Improvement of the Accuracy of Solution for Ill-conditioned Systems by the
Iterative Refinement Method

As discussed in Reference 2, we have seen that when A is ill-conditioned, the com-
puted solution  may be inaccurate without any indication in the form of a large
solution vector. Hence, it is important to have a good estimate of the condition
number of matrix A.

Obviously, can be computed so that the condition number of matrix A can be
estimated directly. If the condition number of matrix A is small, then the computed

is also close to the true . The problem is that the computation of is n
times more expensive than the LU factorization of the matrix A where n is the
order of the matrix. Also if the condition number of matrix A is large, then the com-
putation of  is not accurate either. Hence, we propose an alternative method
that is much cheaper and more reliable when A is ill-conditioned. Moreover, the
method improves the accuracy of the solution while at the same time gives an esti-
mate of the condition number.

Suppose r = b - A  is the residual vector to a computed solution , then
(19)

Now assume that Gaussian elimination has given the approximate triangular fac-
tors and . From Equation (11), we know that , where E is small.
We can therefore approximate the correction x -  with the solution to

(20)
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This only takes 2 operations and is much cheaper than the computation of
for large n (n in the test case is only five although it may expand to fourteen when
more terms of the Taylor series expansion in the state variables are used).

New rounding errors are introduced in the computation of , and  +  may
not be a more accurate solution than . A more detailed analysis shows that,
because of the cancellation which will take place in the computation of the residual
vector r, it is essential that this vector be computed with sufficient accuracy. It is
often advisable to proceed as follows. The components in r are

(21)

If  and  are given with t digits, then the products  contain at most 2t
digits. We compute these products exactly and accumulate the sum using 2t digits.
Finally, is computed and rounded to t digits. This can be done very conveniently
on most computers and will ensure that the error from this part of the calculation
is small.

The improved solution  can, of course, be corrected in the same way and
hence the name iterative refinement. Unless the condition number is very large,
one or two refinements are usually sufficient. The condition number can be esti-
mated by

(22)

where n is the order of the matrix and u is the rounding unit, (see p. 184 of Refer-
ence 2). As long as the condition number satisfies

(23)

then the above procedure works (Reference 2). If Inequality (23) is not satisfied,
then enhanced precision should be used throughout the calculation to reduce the
rounding unit u so that Inequality (23) is satisfied.

2.2  Enhanced Precision in the Matrix Solver

The dynamically dimensioned array is first mapped to a locally defined two-dimen-
sional array in enhanced precision where the Gaussian elimination process and
the forward and backward substitution is carried out. The scaled column pivoting
algorithm is implemented in enhanced precision to eliminate any effect ill-condi-
tionness may have in the solution of the matrix equation.

2.3  Choice of Algorithm

For problems that satisfy Inequality (23), the scaled column pivoting algorithm
with iterative refinement is used. Otherwise, the algorithm described in section
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2.2 is used.

.

2.4  Implementation

2.4.1  Changes Required for the Semi-Implicit Scheme

Software implementation for the semi-implicit scheme is done primarily in the
subroutine PRESEQ. Both partial pivoting and scaling will be introduced there.
Also the iterative refinement process will be implemented in FORTRAN 90. For
completeness, some details of implementation are given below.

In PRESEQ, the matrix A was first factorized and then the last row of A inverse
was computed and stored in the last row of A. The elements of A are stored in
dynamic scratch space, a11(ix), a12(ix),..., etc. Here ix is the volume index for a
given volume. In order for Gaussian elimination with partial pivoting and equili-
brating (or scaled column pivoting) to work efficiently, it is important that the
matrix at the volume indexed with ix be first mapped to a 5x6 matrix locally. A
published algorithm is then used to perform the Gaussian elimination with partial
pivoting and equilibrating for the 5x6 locally dimensioned matrix.

The algorithm is applied to the matrix equation  , where

, the solution of which gives the last row of A inverse.

The advantage of this approach is that indirect addressing can be used to simulate
row interchanges (see the algorithm below). For computers with parallel proces-
sors, several locally dimensioned matrices may be needed. Instead the algorithm
is coded in a subroutine called by PRESEQ with ix as the main argument. Each
thread is then assigned a different ix. For maximum efficiency, PRESEQ should
contain only two or three such subroutines or loops where ix is incremented. The
following algorithm is taken from Reference 3. This choice is made mainly because
of the clarity of the algorithm and there is a good one to one correspondence
between each step of the algorithm and the published software in Reference 4. In
the following algorithm, the n x (n+1) matrix A = is set to be the transpose of
the matrix aij(ix) in PRESEQ, i.e.  = aji(ix), and the right hand side vector is
stored in the (n+1)th column of A. The LU factorization is carried out in steps 1-7
below with L stored in the lower triangular part of the matrix.

Algorithm for Gaussian elimination with partial pivoting and equilibrating

Step 1. For i= 1,...,n set ; set NROW(i) = i

Step 2. For i= 1,...,n-1 do steps 3-5. (Elimination process)

ATx e5=

e5 0 0 0 0 1, , , ,( )T
=

aij( )
aij

si max1 j n≤ ≤ aij=
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Step 3.Let p be the smallest integer with  and

Step 4.If NROW(i) not = NROW(p), then set NCOPY = NROW(i);
NROW(i) = NROW(p); NROW(p) = NCOPY. (simulated row
interchanges)

Step 5.For j=i+1,....,n do steps 6 and 7.

Step 6.Set m(NROW(j),i) = a(NROW(j),i)/a(NROW(i),i)

Step 7.Perform

Step 8. Set = a(NROW(n),n+1)/a(NROW(n),n) (Start backward
substitution)

Step 9. For i = n-1,.....,1, set

Step 10.Estimate the condition number of the matrix A relative to the nth
component of the solution by computing

Step 11.If  < , stop. Otherwise, if , compute the
residual vector where x is the computed solution, and

 is the nth unit vector. (Start iterative refinement process)

Step 12.Solve Az = r by using the factored matrix to do forward and
backward substitution; set . (Start forward substitution
process)

Step 13.For i = 2,...,n, set

Step 14.Repeat steps 8 and 9. Compute x = x + z. Stop.

i p n≤ ≤

a NROW p( ) i,( )( )
s NROW p( )( )

-------------------------------------------------- maxi j n≤ ≤
a NROW j( ) i,( )( )

s NROW j( )( )
-------------------------------------------------=

ENROW j( ) m NROW j( ) i,( )ENROW i( )– ENROW j( )→

xn

xi
a NROW i( ) n 1+,( ) Σ j i 1+=

n a NROW i( ) j,( )xj–

a NROW i( ) i,( )
--------------------------------------------------------------------------------------------------------------------------------=

κ A( )n n maxi 1=
n si( ) Σi 1=

n xi( )=

κ A( )n 10
7 κ A( ) 10

13<
r en Ax–=

en

z1 r1=
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If the condition number of the matrix A is bigger than 1.0e13, then only do steps
1 through 9 in the above algorithm in enhanced precision.,

2.4.2  Changes Required for the Nearly-Implicit Scheme

Software implementation for the nearly-implicit scheme is done primarily in the

subroutine VIMPLT. Both partial pivo ting and scaling will be introduced there.

The algorithm is applied to the matrix equation  , where

, the solution of which gives the last row of A inverse and to the

matrix equation  , where , the solution of which

gives the fourth row of A inverse.

3.0  Developmental Verification Problems and Results

The test problems include the Edwards pipe problem and the typical PWR prob

lem. Because the equations and are solved for the nearly

implicit scheme, a good method of measuring the accuracy of the methods is to
compute the combined cumulative sum of the Euclidean norm of the residuals for
both equations. The combined cumulative norms for both the old and the new
methods of solving the matrix equation are compared in Figure 3 and Figure 4
for both the Edwards pipe problem and the typical PWR problem.

Because the equation  is solved for the semi-implicit scheme, a good

method of measuring the accuracy of the method is to compute the cumulative sum
of the Euclidean norm of the residuals. The cumulative norms for both the old and
the new methods of solving the matrix equation are compared in Figure 3 and
Figure 4 for both the Edwards pipe problem and the typical PWR problem. The
new method generally computes a smaller residual. The number of advancements
required by the new method for the typical PWR problem is 4310. The number of
advancements required by the old method is 4720. Both methods use the same
number of advancements for the Edwards pipe problem. The time history of the
pressures computed by both methods are aboout the same.

ATx e5=

e5 0 0 0 0 1, , , ,( )T
=

ATx e4= e4 0 0 0 1 0, , , ,( )T
=

ATx e5= ATx e4=

ATx e5=
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Figure 1   Comparison of the cumulative sum of the combined
norms of the residualls for the typ1200n.i problem
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Figure 2   Comparison of the cumulative sum of the norm of the
residualls between the old and the new methods for the nearly-
implicit scheme for the Edwards pipe problem
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Figure 3   Comparison of cumulative sum of norm of residuals for
the typ1200.i problem for the semi-implicit scheme.
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